KoBold Metals

Machine Learning Engineer, Remote Sensing - Staff or Principal

Remote
USD 200k - 300k
Machine Learning R Python NumPy Spark
Description

About the company

The mining industry has steadily become worse at finding new ore deposits, requiring >10X more capital to make discoveries compared to 30 years ago. The easy-to-find, near-surface deposits have largely been found, and the industry has chronically under-invested in new exploration technology, relying on the manual techniques of yesteryear – even as demand accelerates for copper, lithium, and other metals to build electric vehicles, renewable energy, and data centers.

KoBold builds AI models for mineral exploration and deploys those models—alongside our novel sensors—to guide decisions on KoBold-owned-and-operated exploration programs. In the six years since founding, KoBold has become by far both the largest independent mineral exploration company and the largest exploration technology developer. Our data scientists and software engineers, who come from leading technology companies, jointly lead exploration programs with our renowned exploration geologists.

KoBold has proven its first discovery with materially less capital than the industry average and found one of the best copper deposits ever discovered: the copper is far more concentrated than the global average of copper mines, and this asset alone is expected to generate meaningful revenue for decades. KoBold has a portfolio of more than 60 other projects, each of which has the potential for another high-quality discovery.

KoBold is privately held; investors include institutional asset managers T. Rowe Rice and Canada Pension Plan Investments; technology venture capitalists Andreessen Horowitz, Breakthrough Energy Ventures, BOND Capital, and Standard Investments; and natural resources companies Equinor, BHP, and Mitsubishi.

About the position:

At KoBold we believe that a modern ML stack will enable systematic mineral exploration and materially improve the success rate. This role is a key ingredient to this strategy. As a member of our software engineering team, you will apply software engineering and machine learning to large remote-sensing datasets in order to build scalable ML systems to help make high-speed, high-quality decisions for our mineral exploration projects. Collaborating with our exceptional team of data scientists and geologists, you will tackle complex scientific problems head-on and collectively pave the way for discoveries of vital energy transition metals like lithium, copper, nickel, and cobalt. Together we can shape the future of mineral exploration and contribute to building a sustainable world.

Responsibilities of this role include:

  • Architect, implement, and maintain foundational scientific computing libraries for distributed processing of large-scale geospatial rasters, to be used in Kobold’s mineral exploration analyses.
  • In collaboration with other engineers, build tooling to increase the velocity of our machine learning progress on geospatial raster data, including enabling rapid prototyping in Jupyter notebooks; build experimentation, evaluation, and simulation frameworks; turning successful R&D into robust, scalable ML pipelines; and organizing models and their outputs for repeatability and discoverability.
  • In collaboration with data scientists, build models to make statistically valid predictions about the locations of compositional anomalies within the Earth’s crust.
  • Apply–and coach team members to use–engineering best practices such as writing robust, testable and composable code
  • Collaborate with data scientists, geoscientists and engineers to invent the modern scientific computing stack for mineral exploration

Qualifications

Our ideal candidate will have:

  • At least 5 years of experience as a software engineer, data scientist or ML engineer, though most great candidates will have closer to 10. Recent bachelor’s/master’s candidates are unlikely to be competitive.
  • Track record of building production quality data processing solutions or tooling that have delivered business value
  • Proficiency with foundational concepts of ML, including statistical, traditional and deep-learning approaches
  • Proficiency in Python, ideally including array-based packages such as xarray and numpy
  • Proficiency in scaling complex data operations across distributed computing resources, using tools such as Spark or Dask
  • Drive to increase the velocity and effectiveness of our data scientists in both experimental and production workflows 
  • Capacity to dive deep on novel challenging problems in applying ML to mineral exploration, including understanding a complex domain of geology and mineral exploration practices as well as working with limited, disparate and noisy data sources 
  • Collaborative attitude to work with stakeholders with different backgrounds (data scientists, geoscientists, software engineers, operations)
  • Experience with multispectral remote-sensing data from a variety of sources

Work practices and motivation:

  • Ability to take ownership and responsibility of large projects.
  • Intellectual curiosity and eagerness to learn about all aspects of mineral exploration, particularly in the geology domain. Open to working directly with geologists in the field. Enjoys constantly learning such that you are driving insights and innovations.
  • Ability to explain technical problems to and collaborate on solutions with domain experts who aren’t software developers. A strong communicator who enjoys working with colleagues across the company.
  • Excitement about joining a fast-growing early-stage company, comfort with a dynamic work environment, and eagerness to take on a range of responsibilities.
  • Keen not just to build cool technology, but to figure out what technical product to build to best achieve the business objectives of the company.
  • Ability to independently prioritize multiple tasks effectively.

 

KoBold Metals is an equal opportunity workplace and an affirmative action employer. We are committed to equal employment opportunity for people of any race, color, ancestry, religion, sex, gender identity, sexual orientation, marital status, national origin, age, citizenship, marital status, disability, or veteran status.

The US base salary range for this full-time exempt position is $200,000-$300,000.

Location: Remote, Candidates can be located anywhere in the United States or Canada. All candidates must be legally authorized to work in the United States or Canada. 

 

 

There are more than 50,000 engineering jobs:

Subscribe to membership and unlock all jobs

Engineering Jobs

60,000+ jobs from 4,500+ well-funded companies

Updated Daily

New jobs are added every day as companies post them

Refined Search

Use filters like skill, location, etc to narrow results

Become a member

🥳🥳🥳 401 happy customers and counting...

Overall, over 80% of customers chose to renew their subscriptions after the initial sign-up.

To try it out

For active job seekers

For those who are passive looking

Cancel anytime

Frequently Asked Questions

  • We prioritize job seekers as our customers, unlike bigger job sites, by charging a small fee to provide them with curated access to the best companies and up-to-date jobs. This focus allows us to deliver a more personalized and effective job search experience.
  • We've got about 70,000 jobs from 5,000 vetted companies. No fake or sleazy jobs here!
  • We aggregate jobs from 5,000+ companies' career pages, so you can be sure that you're getting the most up-to-date and relevant jobs.
  • We're the only job board *for* software engineers, *by* software engineers… in case you needed a reminder! We add thousands of new jobs daily and offer powerful search filters just for you. 🛠️
  • Every single hour! We add 2,000-3,000 new jobs daily, so you'll always have fresh opportunities. 🚀
  • Typically, job searches take 3-6 months. EchoJobs helps you spend more time applying and less time hunting. 🎯
  • Check daily! We're always updating with new jobs. Set up job alerts for even quicker access. 📅

What Fellow Engineers Say