Key Responsibilities
- Design, build, and deploy RAG systems, including multi-agent and AI agent-based architectures for production use cases.
- Contribute to model development processes including fine-tuning, parameter-efficient training (e.g., LoRA, PEFT), and distillation.
- Build evaluation pipelines to benchmark LLM performance and continuously monitor production accuracy and relevance.
- Work across the ML stack—from data preparation and model training to serving and observability—either independently or in collaboration with other specialists.
- Optimize model pipelines for latency, scalability, and cost-efficiency, and support real-time and batch inference needs.
- Collaborate with MLOps, DevOps, and data engineering teams to ensure reliable model deployment and system integration.
- Stay informed on current research and emerging tools in LLMs, generative AI, and autonomous agents, and evaluate their practical applicability.
- Participate in roadmap planning, design reviews, and documentation to ensure robust and maintainable systems.
Required Qualifications
- 5+ years of experience in machine learning engineering, applied AI, or related fields.
- Bachelor’s or Master’s degree in Computer Science, Machine Learning, Engineering, or a related technical discipline.
- Strong foundation in machine learning and data science fundamentals—including supervised/unsupervised learning, evaluation metrics, data preprocessing, and feature engineering.
- Proven experience building and deploying RAG systems and/or LLM-powered applications in production environments.
- Proficiency in Python and ML libraries such as PyTorch, Hugging Face Transformers, or TensorFlow.
- Experience with vector search tools (e.g., FAISS, Pinecone, Weaviate) and retrieval frameworks (e.g., LangChain, LlamaIndex).
- Hands-on experience with fine-tuning and distillation of large language models.
- Comfortable with cloud platforms (Azure preferred), CI/CD tools, and containerization (Docker, Kubernetes).
- Experience with monitoring and maintaining ML systems in production, using tools like MLflow, Weights & Biases, or similar.
- Strong communication skills and ability to work across disciplines with ML scientists, engineers, and stakeholders.
Preferred Qualifications
- PhD in Computer Science, Machine Learning, Engineering, or a related technical discipline.
- Experience with multi-agent RAG systems or AI agents coordinating workflows for advanced information retrieval.
- Familiarity with prompt engineering and building evaluation pipelines for generative models.
- Exposure to Snowflake or similar cloud data platforms.
- Broader data science experience, including forecasting, recommendation systems, or optimization models.
- Experience with streaming data pipelines, real-time inference, and distributed ML infrastructure.
- Contributions to open-source ML projects or research in applied AI/LLMs.
- Certifications in Azure, AWS, or GCP related to ML or data engineering.
Other Jobs from Enable
Sr. Software Engineer (Integrations)
Software Engineering Manager
Sr. Machine Learning Engineer
Sr. Software Engineer II
Integrations Project Lead
Similar Jobs
Mgr. Software Engineering- AI
Senior Principal Machine Learning Engineer
Machine Learning Engineer
Senior ML/AI Engineer
Machine Learning Engineer Intern - Master’s
AI Security Engineer
There are more than 50,000 engineering jobs:
Subscribe to membership and unlock all jobs
Engineering Jobs
60,000+ jobs from 4,500+ well-funded companies
Updated Daily
New jobs are added every day as companies post them
Refined Search
Use filters like skill, location, etc to narrow results
Become a member
🥳🥳🥳 452 happy customers and counting...
Overall, over 80% of customers chose to renew their subscriptions after the initial sign-up.
To try it out
For active job seekers
For those who are passive looking
Cancel anytime
Frequently Asked Questions
- We prioritize job seekers as our customers, unlike bigger job sites, by charging a small fee to provide them with curated access to the best companies and up-to-date jobs. This focus allows us to deliver a more personalized and effective job search experience.
- We've got about 70,000 jobs from 5,000 vetted companies. No fake or sleazy jobs here!
- We aggregate jobs from 5,000+ companies' career pages, so you can be sure that you're getting the most up-to-date and relevant jobs.
- We're the only job board *for* software engineers, *by* software engineers… in case you needed a reminder! We add thousands of new jobs daily and offer powerful search filters just for you. 🛠️
- Every single hour! We add 2,000-3,000 new jobs daily, so you'll always have fresh opportunities. 🚀
- Typically, job searches take 3-6 months. EchoJobs helps you spend more time applying and less time hunting. 🎯
- Check daily! We're always updating with new jobs. Set up job alerts for even quicker access. đź“…
What Fellow Engineers Say